
Journal of Statistical Physics, Vol. 66, Nos. 3/4, 1992 

An Efficient Hydrodynamic Cellular Automata for 
Simulating Fluids with Large Viscosities 

G. A. Kohring 1 

Received September 17, 1991 

A hydrodynamic cellular automata (HDCA) for simulating two-dimensional 
fluids with large viscosities is proposed. The model is characterized by a mean 
free path which is of the same size as in the FHP-II  model, but with a viscosity 
more than 10 times larger. This new model should make simulations of flows at 
low Reynolds number more efficient. 
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Hydrodynamic cellular automata (HDCA), also called "lattice gases," are 
by now a well-established tool to simulate hydrodynamics. ~1 i0) Previous 
researchers have concentrated on developing HDCA possessing very low 
viscosities in an attempt to study fluid flows at high Reynolds numberJ 1'21 
Such models offer, at present, the best hope for examining the way in which 
macrostructures in hydrodynamics form from microscopic motions. 
Another application of the HDCA method is in low-Reynolds-number flow 
through complicated geometries, e.g., flows in porous media ~3-5) or through 
porous membranes. ~6) Both of these problems are especially important in 
the oil and chemical industries. However, for these problems, HDCA 
models with very low viscosities are inefficient for several reasons. First, the 
typical relaxation time z of a system with characteristic length scale lo and 
viscosity v scales like z--~ 12/v. (7) Hence, the lower the viscosity, the longer 
one must wait for the system to come into equilibrium. Second, the velocity 
fluctuations increase as the viscosity is lowered, so that long-time or large 
spatial averages are need to smooth out these fluctuations. ~6) Finally, in the 
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previous models, the viscosity and the mean free path were correlated, so 
that any attempt to increase the viscosity led to an increased mean free 
path and, consequently, the need to simulate large systems/3,s) In this 
paper an attempt is made to overcome these problems, by introducing a 
new model which has a relatively large viscosity but at the same time a 
relatively small mean free path. 

The starting point for the present model rests upon the observation 
that the derivation of Navier Stokes behavior from HDCA models is 
dependent only upon ensemble averages and not upon the detailed 
microstates. (8) More precisely, if P(&, t, r) is the probability for obtaining 
configuration s along direction i at node r of a two-dimensional triangular 
lattice, then the only quantity of importance for studying hydrodynamic 
motions on macroscopic scales is the mean population ~ ( t ,  r), defined as 

Y / / ( t , r ) -  ~ ni(si, t , r )P(s i ,  t ,r  ) (1) 
s i ( r )  ~ F 

where ni(si, t, r) is the number of particles in configuration s along 
direction i at node r and F is the phase space of the fluid flow. (8) (As usual, 
we are working with a triangular lattice.) The particular consequence of 
Eq. (1) which is of interest here is that momentum conservation, defined by 

~" ci#~ii(t+ 1, r q-ci)-~ Z e i~ i ( t  , r) 
i i 

(where the c i represent the six possible lattice momenta) has meaning only 
for the ensemble average and not for each microscopic state. Hence, a set 
of collision rules which conserves momentum at the level of ensemble 
averages, but not at the level of the individual collision rules, should also 
yield behavior in agreement with the Navier-Stokes equations. Now, this 
is not to say that such collision rules will not have other consequences, 
indeed, since the viscosity is a function of the collision rules, such rules will 
yield viscosities which differ from the those found in the normal F H P  

Table  I. Col l is ion Table  fo r  the  Present  M o d e l  a 

a In addition to the collisions explicitly shown, those colli- 
sions obtained by reflection symmetry and time reversal 
are also included. The latter are needed to ensure exact 
detailed balance. 
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models and could in principle yield velocity-dependent viscosities, i.e., 
fluids with non-Newtonian behavior. In this paper, a set of collision rules 
which does not appear to have any of these undesired side effects will be 
presented. 

The collision rules for this model are presented in Table I. Note that 
the rules satisfy exact detailed balance, that there are exactly as many rules 
which gain momentum as lose momentum, and that in each case the 
magnitude of the nonconserved momentum Ap is equal to one, lap] = 1. 
A constant value for ]Apt appears to be necessary and sufficient to prevent 
the viscosity from acquiring a speed dependence. Rather than relying on 
the Boltzmann approximation (8) to demonstrate this point, we use numeri- 
cal simulations, because any nonlinearities missed by the Boltzmann 
approximation will show up in computer experiments. It should be 
mentioned here that use of numerical techniques explicitly assumes the 
equivalence between time averages and ensemble averages. Although this 
remark also holds for the FHP  models, it is important to note for the 
present models that the momentum is not conserved between successive 
time steps at each site. However, for times scales over which the time 
average approaches the ensemble average, momentum will be conserved at 
each site. 

A sensitive test of the above model can be made by simulating a flow 
driven between two fixed plates by a linear pressure gradient (Poiseuille 
flow). The results of a typical two-dimensional simulation are presented in 
Fig. 1 for a system of L = 1536 x H =  512. The system was allowed to equi- 
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Fig. 1. Velocity profile for a flow driven by a linear pressure gradient. The system size is 
1536 • 512. The solid line is the best fit to the one-parameter Poiseuille velocity profile. 
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librate for 50,000 time steps before measurements, which used another 
50,000 time steps, were started. The solid line is the best fit to the one- 
parameter Poiseuille velocity profile: vx(y)= const x y(H-y). These data 
alone support the claim that there are no velocity dependences entering 
into the viscosity. Further simulations at varying pressure gradients are 
represented in Fig. 2, which shows a plot of the maximum channel velocity 
versus pressure gradient. (As a check on the method, the results for similar 
simulations with the duality invariant version of the FHP-I model are also 
included.) The clear linearity in this plot demonstrates that the viscosity is 
independent of velocity. 

Since the slope is inversely proportional to the viscosity, it can be 
immediately seen that the viscosity of the new model is much larger than 
that of the FHP-I model. Using a linear least squares fit to the data in 
Fig. 2, one can calculate the viscosity, and the results are shown in Fig. 3 
along with similar data at different densities. For comparison, the viscosity 
of the duality invariant versions of the FHP-! and FHP-II models is also 
presented. These data demonstrate that the viscosity of the present model 
is an order of magnitude larger than that of the FHP-II model and nearly 
three times larger than that of FHP-I. 

The next quantity of interest which concerns the efficiency of the 
simulations is the mean free path. (3'5i The mean free path 2 can be 
estimated by dividing the total number of particles by a sum over all 
different types of collisions, with each type of collision being weighted by 
the number of particles involved in that collision. The mean-free-path 
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Fig. 2. Maximum channel velocity versus pressure gradient. The system size is the same as 
for Fig. 1. The squares are for the present model and the triangles for the duality invariant 
version of FHP-I. 
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Fig. 3. Viscosity as a function of density for various models. The squares are for the present 
model, and the filled circles and open diamonds for the duality invariant versions of FHP-I  
and FHP-II,  respectively. 

results for the present model and duality invariant versions of the FHP-!  
and FHP-II  models are presented in Fig. 4. From this figure it can be seen 
that the present model has a mean free path which is about as small as 
that for the FHP-II  model and about three times smaller than that of the 
FHP-I  model. 
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Fig. 4. Mean free path as a function of density for various models. The symbols have the 
same meaning as in Fig. 3. 
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These results taken together lead to the conclusion that the present 
model should be more efficient at low-Reynolds-number flows than the 
older models. An estimate of the efficiency of the present model in such 
flow regimes can be made by noting that, because the system size must be 
much greater than 2 in order for hydrodynamic correlations to have time 
to develop, (3'5~ the Reynolds number  at constant velocity is bounded from 
below by 2Iv. From Fig. 3 and 4, this lower bound can be estimated and 
it is approximately one order of magnitude smaller in the present model 
than in the F H P  models. 

As a further check on the question of how the hydrodynamic correla- 
tions build up with system size, we have performed the same channel 
experiment with the present model as was performed previously with the 
F H P - I [ 5 ]  and F H P - I I [ I 1 ]  models, in order to determine how the finite 
size effects scale with the channel width, R. Figure 5 shows a plot of the 
scaled permeability (~- f lux /pressure  gradient) as a function of, 2/R, for 
the three models. The present model has the same finite size behavior as 
the F H P  models in terms of 2/R; thus for a fixed R its finite size errors are 
smaller. 

No model is of much use if it needs an inordinate amount  of computer 
time for actual simulations. The present model can be implemented with 
Boolean operations on vector or SIMD computers. Its update speed is 
about 460 site updates per /~sec on the NEC-SX3/ l l .  This is about 10% 
slower than the implementation of the FHP- I  model discussed in ref. 9 and 
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Fig. 5. Scaled permeability as a function of the mean free path divided by the channel size. 
The filled circles are for the FHP-I model, the diamonds for the FHP-II model and the 
squares are for the present model. The experimental setup is described in Refs. 5 and 11. The 
density is 0.9 particles per site. 
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about  30% faster than a similar Boolean implementation of the F H P - I I  
model. Hence, in terms of computer  speed and memory,  it is competitive 
with the F H P  models. 

In summary,  a new HDCA model has been presented, and computer 
simulations have demonstrated that this model possess a mean free path 
which is approximately the same size as that of the F H P - I I  model, 
although the viscosity is more than ten times larger. This new model 
should be very useful for studying low-Reynolds-number fluid flows 
through complicated geometries. Furthermore, the new model may be of 
use for studying problems in two-phase fluid flows where the viscosities 
differ by an order of magnitudeJ 1~ Previous attemps to deal with this 
problem used fluids whose mean free paths differed considerably. The present 
model would reduce the complications introduced by such unphysical 
approximations. 

Finally, we have also performed simulations in which the collision 
rules of the F H P - I  model were combined with those of the present model. 
Such a set of collision rules violates the condition that tApl = const. Indeed, 
using this set of rules, we were unable to establish a constant pressure 
gradient and, consequently, no Poiseuille velocity profile. Such models 
could be of use in describing non-Newtonian fluids, although more work is 
needed in this area before such an assertion can be sustained. 
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